Minimal symmetric factorizations of symmetric real and complex rational matrix functions
نویسندگان
چکیده
منابع مشابه
Pseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملAppendix for ``On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations''
1. If a communication class has at least two nodes and is aperiodic, then the rows corresponding to those nodes in T∞ are the stationary distribution for that class. Hence, T∞ has identical rows, so it cannot be full rank. 2. The probability of a Markov chain ending in a transient node goes to zero as the number of iterations k grows, so the column of T∞ corresponding to any transient node is i...
متن کاملOn Mixed Memberships and Symmetric Nonnegative Matrix Factorizations
The problem of finding overlapping communities in networks has gained much attention recently. Optimization-based approaches use nonnegative matrix factorization (NMF) or variants, but the global optimum cannot be provably attained in general. Model-based approaches, such as the popular mixed membership stochastic blockmodel or MMSB (Airoldi et al., 2008), use parameters for each node to specif...
متن کاملpseudo ricci symmetric real hypersurfaces of a complex projective space
pseudo ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo ricci symmetric real hypersurfaces of the complex projective space cpn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملSoliton Theory, Symmetric Functions and Matrix Integrals
We consider certain scalar product of symmetric functions which is parameterized by a function r and an integer n. One the one hand we have a fermionic representation of this scalar product. On the other hand we get a representation of this product with the help of multi-integrals. This gives links between a theory of symmetric functions, soliton theory and models of random matrices (such as a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1995
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)00151-3